Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
JMIR Aging ; 7: e52443, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38623717

RESUMEN

Background: Interventions and care that can evoke positive emotions and reduce apathy or agitation are important for people with dementia. In recent years, socially assistive robots used for better dementia care have been found to be feasible. However, the immediate responses of people with dementia when they are given multiple sensory modalities from socially assistive robots have not yet been sufficiently elucidated. Objective: This study aimed to quantitatively examine the immediate emotional responses of people with dementia to stimuli presented by socially assistive robots using facial expression analysis in order to determine whether they elicited positive emotions. Methods: This pilot study adopted a single-arm interventional design. Socially assistive robots were presented to nursing home residents in a three-step procedure: (1) the robot was placed in front of participants (visual stimulus), (2) the robot was manipulated to produce sound (visual and auditory stimuli), and (3) participants held the robot in their hands (visual, auditory, and tactile stimuli). Expression intensity values for "happy," "sad," "angry," "surprised," "scared," and "disgusted" were calculated continuously using facial expression analysis with FaceReader. Additionally, self-reported feelings were assessed using a 5-point Likert scale. In addition to the comparison between the subjective and objective emotional assessments, expression intensity values were compared across the aforementioned 3 stimuli patterns within each session. Finally, the expression intensity value for "happy" was compared between the different types of robots. Results: A total of 29 participants (mean age 88.7, SD 6.2 years; n=27 female; Japanese version of Mini-Mental State Examination mean score 18.2, SD 5.1) were recruited. The expression intensity value for "happy" was the largest in both the subjective and objective assessments and increased significantly when all sensory modalities (visual, auditory, and tactile) were presented (median expression intensity 0.21, IQR 0.09-0.35) compared to the other 2 patterns (visual alone: median expression intensity 0.10, IQR 0.03-0.22; P<.001; visual and auditory: median expression intensity 0.10, IQR 0.04-0.23; P<.001). The comparison of different types of robots revealed a significant increase when all stimuli were presented by doll-type and animal-type robots, but not humanoid-type robots. Conclusions: By quantifying the emotional responses of people with dementia, this study highlighted that socially assistive robots may be more effective in eliciting positive emotions when multiple sensory stimuli, including tactile stimuli, are involved. More studies, including randomized controlled trials, are required to further explore the effectiveness of using socially assistive robots in dementia care.


Asunto(s)
Demencia , Robótica , Humanos , Femenino , Anciano de 80 o más Años , Proyectos Piloto , Emociones/fisiología , Felicidad
2.
Front Med (Lausanne) ; 11: 1239916, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545511

RESUMEN

Introduction: Qualitative information in the form of written reflection reports is vital for evaluating students' progress in education. As a pilot study, we used text mining, which analyzes qualitative information with quantitative features, to investigate how rehabilitation students' goals change during their first year at university. Methods: We recruited 109 first-year students (66 physical therapy and 43 occupational therapy students) enrolled in a university rehabilitation course. These students completed an open-ended questionnaire about their learning goals at the time of admission and at 6 and 12 months after admission to the university. Text mining was used to objectively interpret the descriptive text data from all three-time points to extract frequently occurring nouns at once. Then, hierarchical cluster analysis was performed to generate clusters. The number of students who mentioned at least one noun in each cluster was counted and the percentages of students in each cluster were compared for the three periods using Cochran's Q test. Results: The 31 nouns that appeared 10 or more times in the 427 sentences were classified into three clusters: "Socializing," "Practical Training," and "Classroom Learning." The percentage of students in all three clusters showed significant differences across the time periods (p < 0.001 for "Socializing"; p < 0.01 for "Practical Training" and "Classroom Learning"). Conclusion: These findings suggest that the students' learning goals changed during their first year of education. This objective analytical method will enable researchers to examine transitional trends in students' reflections and capture their psychological changes, making it a useful tool in educational research.

3.
Front Neurosci ; 18: 1331416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476868

RESUMEN

The application of 28 GHz millimeter-wave is prevalent owing to the global spread of fifth-generation wireless communication systems. Its thermal effect is a dominant factor which potentially causes pain and tissue damage to the body parts exposed to the millimeter waves. However, the threshold of this thermal sensation, that is, the degree of change in skin temperature from the baseline at which the first subjective response to the thermal effects of the millimeter waves occurs, remains unclear. Here, we investigated the thermal sensation threshold and assessed its reliability when exposed to millimeter waves. Twenty healthy adults were exposed to 28 GHz millimeter-wave on their left middle fingertip at five levels of antenna input power: 0.2, 1.1, 1.6, 2.1, and 3.4 W (incident power density: 27-399 mW/cm2). This measurement session was repeated twice on the same day to evaluate the threshold reliability. The intraclass correlation coefficient (ICC) and Bland-Altman analysis were used as proxies for the relative and absolute reliability, respectively. The number of participants who perceived a sensation during the two sessions at each exposure level was also counted as the perception rate. Mean thermal sensation thresholds were within 0.9°C-1.0°C for the 126-399 mW/cm2 conditions, while that was 0.2°C for the 27 mW/cm2 condition. The ICCs for the threshold at 27 and 126 mW/cm2 were interpreted as poor and fair, respectively, while those at higher exposure levels were moderate to substantial. Apart from a proportional bias in the 191 mW/cm2 condition, there was no fixed bias. All participants perceived a thermal sensation at 399 mW/cm2 in both sessions, and the perception rate gradually decreased with lower exposure levels. Importantly, two-thirds of the participants answered that they felt a thermal sensation in both or one of the sessions at 27 mW/cm2, despite the low-temperature increase. These results suggest that the thermal sensation threshold is around 1.0°C, consistent across exposure levels, while its reliability increases with higher exposure levels. Furthermore, the perception of thermal sensation may be inherently ambiguous owing to the nature of human perception.

4.
Ann Med ; 56(1): 2306905, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38294958

RESUMEN

INTRODUCTION: Dose (number of repetitions) has been suggested as a key element in the effectiveness of rehabilitation exercises to promote motor recovery of the hemiparetic upper limb. However, rehabilitation exercises tend to be monotonous and require significant motivation to continue, making it difficult to increase the exercise dose. To address this issue, gamification technology has been implemented in exercises to promote self-engagement for people with hemiparesis in continuing monotonous repetitive movements. This study aimed to investigate how subjective perspectives, specifically enjoyability, motivation to continue, and expectancy of effectiveness, change through continuous daily exercise using a developed gamified exercise system. MATERIALS AND METHOD: Ten people with stroke suffering upper limb dysfunction underwent daily gamified exercise for seven days. The gamified exercise consisted of an electromyography (EMG)-controlled operating system that enabled users to play virtual games using repetitive finger movements. The participants performed conventional self-exercise on the same day as the control exercise, and rated their subjective perspectives on both exercises on a numerical rating scale on each exercise day. RESULTS: Ratings for enjoyability and motivation to continue consistently showed significantly higher scores for the gamified exercise than for conventional self-exercise on all exercise days. A similar trend was observed in the ratings for the expectancy of effectiveness. No changes over time were found in any of the ratings throughout the exercise period. CONCLUSIONS: Exercise using the developed EMG-controlled gamified system may have the potential to maintain motivation and enjoyment in people with stroke to continue monotonous repetitive finger movements.


Although dose (number of repetitions) has been suggested as a key element in the effectiveness of rehabilitation exercises to promote motor recovery of the hemiparetic upper limb, rehabilitation exercises tend to be monotonous and require significant motivation to continue.Gamification technology has been implemented in exercises to promote self-engagement for people with hemiparesis in continuing monotonous repetitive movements.Exercises using the developed EMG-controlled gamified system may have the potential to maintain motivation and enjoyment in people with stroke to continue monotonous repetitive finger movements.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Estudios de Factibilidad , Extremidad Superior , Accidente Cerebrovascular/complicaciones , Terapia por Ejercicio , Paresia/etiología , Paresia/rehabilitación
5.
J Neurophysiol ; 130(4): 861-870, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37667840

RESUMEN

Arm reaching is often impaired in individuals with stroke. Nonetheless, how aiming directions influence reaching performance and how such differences change with motor recovery over time remain unclear. Here, we elucidated kinematic parameters of reaching toward various directions in people with poststroke hemiparesis in the subacute phase. A total of 13 and 15 participants with mild and moderate-to-severe hemiparesis, respectively, performed horizontal reaching in eight directions with their more-affected and less-affected sides using an exoskeleton robotic device at the time of admission to and discharge from the rehabilitation ward of the hospital. The movement time, path length, and number of velocity peaks were computed for the mild group (participants able to reach toward all eight directions). In addition, the total amount of displacement (i.e., movement quantity) toward two simplified directions (mediolateral or anteroposterior) was evaluated for the moderate-to-severe group (participants who showed difficulty in completing the reaching task). Motor recovery was evaluated using the Fugl-Meyer assessment. The mild group showed worse values of movement parameters during reaching in the anteroposterior direction, irrespective of the side of the arm or motor recovery achieved. The moderate-to-severe group exhibited less movement toward the anteroposterior direction than toward the mediolateral direction at admission; however, this direction-dependent bias in movement quantity decreased, with the movement expanding toward the anteroposterior direction with motor recovery at discharge. These results suggest that direction-dependent differences in the quality and quantity of reaching performance exist in people after stroke, regardless of the presence or severity of hemiparesis. This highlights the need to consider the task work area when designing rehabilitative training.NEW & NOTEWORTHY Arm reaching, a fundamental function required for the upper extremities, is often impaired after stroke due to muscle weakness and abnormal synergies. Nonetheless, how aiming directions influence performance remains unclear. Here, we report that direction-dependent differences in the quality and quantity of reaching performance exist, surprisingly regardless of the presence or severity of hemiparesis. This result highlights the need to consider the task work area when designing rehabilitative training.


Asunto(s)
Dispositivo Exoesqueleto , Robótica , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Movimiento , Paresia/etiología
6.
Front Neurosci ; 17: 1145505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37179562

RESUMEN

Introduction: Contact electrical currents in humans stimulate peripheral nerves at frequencies of <100 kHz, producing sensations such as tingling. At frequencies above 100 kHz, heating becomes dominant, resulting in a sensation of warmth. When the current amplitude exceeds the threshold, the sensation results in discomfort or pain. In international guidelines and standards for human protection from electromagnetic fields, the limit for the contact current amplitude has been prescribed. Although the types of sensations produced by contact current at low frequencies, i.e., approximately 50-60 Hz, and the corresponding perception thresholds have been investigated, there is a lack of knowledge about those in the intermediate-frequency band-particularly from 100 kHz to 10 MHz. Methods: In this study, we investigated the current-perception threshold and types of sensations for 88 healthy adults (range: 20-79 years old) with a fingertip exposed to contact currents at 100 kHz, 300 kHz, 1 MHz, 3 MHz, and 10 MHz. Results: The current perception thresholds at frequencies ranging from 300 kHz to 10 MHz were 20-30% higher than those at 100 kHz (p < 0.001). In addition, a statistical analysis revealed that the perception thresholds were correlated with the age or finger circumference: older participants and those with larger finger circumferences exhibited higher thresholds. At frequencies of ≥300 kHz, the contact current mainly produced a warmth sensation, which differed from the tingling/pricking sensation produced by the current at 100 kHz. Discussion: These results indicate that there exists a transition of the produced sensations and their perception threshold between 100 kHz and 300 kHz. The findings of this study are useful for revising the international guidelines and standards for contact currents at intermediate frequencies. Clinical trial registration: https://center6.umin.ac.jp/cgi-open-bin/icdr_e/ctr_view.cgi?recptno=R000045660, identifier UMIN 000045213.

7.
Multisens Res ; 36(4): 367-386, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37080552

RESUMEN

The mechanisms underlying geocentric (orientations of an object or the body relative to 'gravity') and egocentric estimates (object orientation relative to the 'body') have each been examined; however, little is known regarding the association between these estimates, especially when the body is nearly upright. To address this, we conducted two psychophysical experiments. In Experiment 1, participants estimated the direction of a visual line (subjective visual vertical; SVV) and their own body relative to gravity (subjective body tilt; SBT) and the direction of a visual line relative to the body longitudinal axis (subjective visual body axis; SVBA) during a small-range whole-body roll tilt. We evaluated the correlations between performance on each of these tasks as covariates of actual body tilt angles. Our results showed a significant correlation of performance (estimation errors) on the SVBA task with performance on the SBT task but not performance on the SVV task at the group level after adjusting for the actual body tilt angles, suggesting a link between the estimates for SVBA and SBT tasks. To confirm this relationship, in Experiment 2, we further assessed whether manipulating the subjective direction of the body axis by providing visual feedback in the SVBA task subsequently affected SBT performance. We found that feedback in the SVBA task significantly shifted the SBT angles even when the actual body angles were identical. The observed association between SVBA and SBT performance supports at least a partially shared mechanism underlying body tilt and egocentric estimates when the body is nearly upright.


Asunto(s)
Orientación , Percepción Espacial , Humanos , Posición de Pie , Gravitación , Retroalimentación Sensorial , Percepción Visual
8.
Clin Neurophysiol ; 150: 69-78, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023635

RESUMEN

OBJECTIVE: Transcranial direct current stimulation (tDCS) injects a weak electric current into the brain via electrodes attached to the scalp to modulate cortical excitability. tDCS is used to rebalance brain activity between affected and unaffected hemispheres in rehabilitation. However, a systematic quantitative evaluation of tDCS montage is not reported for the lower limbs. In this study, we computationally investigated the generated electric field intensity, polarity, and co-stimulation of cortical areas for lower limb targeting using high-resolution head models. METHODS: Volume conductor models have thus been employed to estimate the electric field in the brain. A total of 18 head models of healthy subjects were used to calculate the group-level electric fields generated from four montages of tDCS for modulation of lower limbs. RESULTS: C1-C2 montage delivered higher electric field intensities while reaching deeper regions of the lower-limb motor area. It produced a uniform polarization on the same hemisphere target with comparable intensities between hemispheres but with higher variability. CONCLUSIONS: Proper montage selection allows reaching deeper regions of the lower-limb motor area with uniform polarization. SIGNIFICANCE: First systematic computational study providing support to tDCS experimental studies using montages for the lower limb while considering polarity factor for balancing brain activity.


Asunto(s)
Excitabilidad Cortical , Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Encéfalo/fisiología , Cuero Cabelludo
9.
J Vis ; 23(1): 16, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36689216

RESUMEN

Accurate memory regarding the location of an object with respect to one's own body, termed egocentric visuospatial memory, is essential for action directed toward the object. Although researchers have suggested that the brain stores information related to egocentric visuospatial memory not only in the eye-centered reference frame but also in the other egocentric (i.e., head- or body-centered or both) reference frames, experimental evidence is scarce. Here, we tested this possibility by exploiting the perceptual distortion of head/body-centered coordinates via whole-body tilt relative to gravity. We hypothesized that if the head/body-centered reference frames are involved in storing the egocentric representation of a target in memory, then reproduction would be affected by this perceptual distortion. In two experiments, we asked participants to reproduce the remembered location of a visual target relative to their head/body. Using intervening whole-body roll rotations, we manipulated the initial (target presentation) and final (reproduction of the remembered location) body orientations in space and evaluated the effect on the reproduced location. Our results showed significant biases of the reproduced target location and perceived head/body longitudinal axis in the direction of the intervening body rotation. Importantly, the amount of error was correlated across participants. These results provide experimental evidence for the neural encoding and storage of information related to egocentric visuospatial memory in the head/body-centered reference frames.


Asunto(s)
Desempeño Psicomotor , Percepción Espacial , Humanos , Encéfalo , Orientación , Recuerdo Mental
10.
Neuroscience ; 513: 54-63, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36708800

RESUMEN

The lateral prefrontal cortex (PFC) plays a variety of crucial roles in higher-order cognitive functions. Previous works have attempted to modulate lateral PFC function by applying non-invasive transcranial direct current stimulation (tDCS) and demonstrated positive effects on performance of tasks involving cognitive processes. The neurophysiological underpinning of the stimulation effects, however, remain poorly understood. Here, we explored the neurophysiological after-effects of tDCS over the lateral PFC by assessing changes in the magnitude of interhemispheric inhibition from the lateral PFC to the contralateral primary motor cortex (PFC-M1 IHI). Using a dual-site transcranial magnetic stimulation paradigm, we assessed PFC-M1 IHI before and after the application of tDCS over the right lateral PFC. We conducted a double-blinded, crossover, and counterbalanced design where 15 healthy volunteers participated in three sessions during which they received either anodal, cathodal, and sham tDCS. In order to determine whether PFC-M1 IHI could be modulated at all, we completed the same assessment on a separate group of 15 participants as they performed visuo-motor reaction tasks that likely engage the lateral PFC. The results showed that tDCS over the right lateral PFC did not modulate the magnitude of PFC-M1 IHI, whereas connectivity changed when Go/NoGo decisions were implemented in reactions during the motor tasks. Although PFC-M1 IHI is sensitive enough to be modulated by behavioral manipulations, tDCS over the lateral PFC does not have substantial modulatory effects on PFC to M1 functional connectivity, or at least not to the degree that can be detected with this measure.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos , Corteza Prefrontal/fisiología , Cognición
11.
Disabil Rehabil Assist Technol ; 18(6): 883-888, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-34102940

RESUMEN

PURPOSE: Movement repetition is known to play a key role in promoting functional improvements or maintaining functional levels in post-stroke hemiparetic patients. However, repetitive movements tend to be monotonous, making it challenging for patients to continue. Here, we developed a new gamified system to allow patients perform repetitive movements with enjoyment. The present study aimed to examine the usability of the system in subacute stroke patients. METHOD: The exercise system comprised an electromyography-controlled operating system that enabled users to play a virtual game by repetitive finger and wrist movements on the affected side. A total of 13 patients with upper-limb hemiparesis underwent a single bout of exercise using the system and assessed its usability, satisfactoriness, enjoyability, etc. using the System Usability Scale (SUS), Quebec User Evaluation of Satisfaction with assistive Technology (QUEST)-like questionnaire, and numerical rating scale (NRS). RESULTS: All the participants, who had a wide range of paretic levels, were able to perform the exercise using the system. Participants scored the system a median of 85.0 for SUS and 4.2 for the QUEST-like questionnaire, with an "excellent" in usability and "satisfied" in user satisfaction with the system. The median NRS scores for enjoyability, potential for continuous use, and effectiveness were 8.0, 9.0, and 9.0, respectively, which were greater than the scores for usual rehabilitation training for the upper extremity. CONCLUSIONS: The novel electromyography-controlled gamified exercise system may have sufficient usability and enjoyability to motivate patients with a wide range of paretic levels to perform repetitive finger and wrist movements.IMPLICATIONS FOR REHABILITATIONThe electromyography-controlled gamified exercise system had overall positive perspectives on the usability of the system.This exercise system could help motivate patients with a wide range of paretic levels to perform repetitive finger and wrist movements.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Electromiografía , Interfaz Usuario-Computador , Extremidad Superior , Accidente Cerebrovascular/complicaciones , Terapia por Ejercicio , Paresia/rehabilitación , Recuperación de la Función
12.
Physiol Rep ; 10(23): e15527, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461646

RESUMEN

Transcranial magnetic stimulation has been used to assess plastic changes in the cortical motor representations of targeted muscles. The present study explored the optimal settings and stimulation intensity for simultaneous motor mapping of multiple upper-limb muscles across segments. In 15 healthy volunteers, we evaluated cortical representations simultaneously from one muscle in the shoulder, two in the upper arm, two in the forearm, and two intrinsic hand muscles, using five stimulation intensities, ranging from 40% to 100% of the maximum stimulator output. We represented the motor map area acquired at each intensity as a percentage of the maximum for each muscle. We defined a motor map area between 25% and 75% of the maximum as the optimal area size with sufficient scope for both up- and down-regulation, and stimulation intensities producing the map area size within this range as the optimal intensities. We found that motor maps with optimal area sizes could be produced simultaneously for the four distal muscles of the forearm and hand in most participants when the stimulation intensity was set at 120-140% of the resting motor threshold (RMT) of the first dorsal interosseous. For the remaining three proximal muscles, motor maps with optimal area sizes were produced only in a few participants, even when using a higher intensity (180-220% RMT). These findings suggest that cortical representations can be assessed simultaneously in a group of distal muscles using a relatively low stimulation intensity, while a separate operation is required to assess that of the proximal muscles.


Asunto(s)
Corteza Motora , Músculos , Humanos , Extremidad Superior , Mano , Antebrazo
13.
Pilot Feasibility Stud ; 8(1): 259, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517911

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) is a technique that can noninvasively modulate neural states in a targeted brain region. As cerebellar activity levels are associated with upper limb motor improvement after stroke, the cerebellum is a plausible target of tDCS. However, the effect of tDCS remains unclear. Here, we designed a pilot study to assess: (1) the feasibility of a study that aims to examine the effects of cerebellar tDCS combined with an intensive rehabilitation approach based on the concept of constraint-induced movement therapy (CIMT) and (2) the preliminary outcome of the combined approach on upper limb motor function in patients with stroke in the chronic stage. METHODS: This pilot study has a double-blind randomized controlled design. Twenty-four chronic stroke patients with mild to moderate levels of upper limb motor impairment will be randomly assigned to an active or sham tDCS group. The participants will receive 20 min of active or sham tDCS to the contralesional cerebellum at the commencement of 4 h of daily intensive training, repeatedly for 5 days per week for 2 weeks. The primary outcomes are recruitment, enrollment, protocol adherence, and retention rates and measures to evaluate the feasibility of the study. The secondary outcome is upper limb motor function which will be evaluated using the Action Research Arm Test, Fugl-Meyer Assessment, for the upper extremity and the Motor Activity Log. Additionally, neurophysiological and neuroanatomical assessments of the cerebellum will be performed using transcranial magnetic stimulation and magnetic resonance imaging. These assessments will be conducted before, at the middle, and after the 2-week intervention, and finally, 1 month after the intervention. Any adverse events that occur during the study will be recorded. DISCUSSION: Cerebellar tDCS combined with intensive upper limb training may increase the gains of motor improvement when compared to the sham condition. The present study should provide valuable evidence regarding the feasibility of the design and the efficacy of cerebellar tDCS for upper limb motor function in patients with stroke before a future large trial is conducted. TRIAL REGISTRATION: This study has been registered at the Japan Registry of Clinical Trials ( jRCTs042200078 ). Registered 17 December 2020.

14.
J Rehabil Med ; 54: jrm00336, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36173326

RESUMEN

OBJECTIVE: To examine whether alternating training with both the non-paretic and paretic sides (alternating bilateral training), expecting trial-to-trial inter-limb transfer of training effects from the nonparetic to the paretic side, improves upper-limb motor performance in post-stroke patients, compared with unilateral training involving only the paretic side. DESIGN: An assessor-blinded pilot randomized controlled trial. SUBJECTS: Twenty-four right-handed post-stroke patients with hemiparesis. METHODS: Participants were randomly allocated to either an alternating bilateral training group or a unilateral training group (n = 12/group). Participants underwent dexterity training of the paretic arm using the Nine-Hole Peg Test, completing 10 trials/day for 7 consecutive days. The alternating bilateral training group additionally performed alternating trials with the non-paretic limb. Performance change, assessed 1 day and 1 week after the 7-day training period, was compared between groups. RESULTS: Although the improvement was comparable in both groups at both post-training time-points, a sub-analysis in which those with left hemiparesis and those with right hemiparesis were analyzed separately revealed potential benefits of the alternating bilateral training, specifically for those with left hemiparesis. CONCLUSION: Alternating bilateral training may augment training effects and improve upper-limb motor function in patients with left hemiparesis.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Proyectos Piloto , Extremidad Superior , Paresia , Accidente Cerebrovascular/complicaciones
15.
J Rehabil Med Clin Commun ; 4: 1000047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33884149

RESUMEN

OBJECTIVE: To elucidate the characteristics of recovery progression during long-term rehabilitation after moderate-to-severe traumatic brain injury. METHODS: Longitudinal changes in consciousness, swallowing disorders, activities of daily living, and psychological and behavioural status were studied in 7 patients with moderateto-severe traumatic brain injury, using scores of the National Agency for Automotive Safety & Victim's Aid (NASVA score), Glasgow Coma Scale (GCS), Dysphagia Severity Scale (DSS), Eating Status Scale (ESS), Functional Independence Measure (FIM), Cognitive-related Behavioural Assessment (CBA), and Neuropsychiatric Inventory (NPI). Scores were collected every month until discharge (median 359 days after injury), or until the study end date for those patients who remained hospitalized (432 days). RESULTS: Patients were qualitatively classified into those who improved well in the early phase, in terms of consciousness, swallowing, and activities of daily living, and those with less or delayed improvement. Psychological and behavioural difficulties appeared to remain less improved than the other functions for longer periods in many patients. Statistical comparisons that included all 7 patients revealed a significant improvement in NASVA score, GCS, DSS, and ESS, but not in FIM, CBA, and NPI at discharge/at the last measurement compared with scores at admission. CONCLUSION: Swallowing function is more responsive to long-term rehabilitation in patients with moderate-to-severe traumatic brain injury, while neuropsychiatric and behavioural difficulties tend to persist for longer periods.

16.
J Head Trauma Rehabil ; 36(5): E337-E344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33741824

RESUMEN

OBJECTIVE: To investigate whether automatic facial expression analysis can quantify differences in the intensity of facial responses depending on the affective stimuli in a patient with minimally conscious state (MCS). METHODS: We filmed the facial responses of a patient with MCS during the delivery of three 1-minute auditory stimuli: audio clips of comedy movies, a nurse hilariously talking, and recitation of a novel (comedy, nurse, and recitation conditions, respectively). These measures were repeated at least 13 times for each condition on different days for approximately 10 months. The intensity of being "happy" was estimated from the smiling face using a software called FaceReader. The intensity among 5 conditions including those at 2 resting conditions (pre- and poststimuli) was compared using the Kruskal-Wallis test and the Dunn-Bonferroni test for multiple comparisons. RESULTS: Significantly higher values were found in the intensity of being "happy" in the comedy and nurse conditions versus other conditions, with no significant differences between the recitation and pre- or poststimulus conditions. These findings indicate that the automated facial expression analysis can quantify differences in context-dependent facial responses in the patient recruited in this study. CONCLUSIONS: This case study demonstrates the feasibility of using automated facial expression analysis to quantitatively evaluate the differences in facial expressions and their corresponding emotions in a single patient with MCS.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Expresión Facial , Emociones , Felicidad , Humanos , Estado Vegetativo Persistente/diagnóstico
17.
Neurorehabil Neural Repair ; 34(8): 733-745, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845230

RESUMEN

Background. Stroke is one of the most common causes of physical disability worldwide. The majority of survivors experience impairment of movement, often with lasting deficits affecting hand dexterity. To date, conventional rehabilitation primarily focuses on training compensatory maneuvers emphasizing goal completion rather than targeting reduction of motor impairment. Objective. We aim to determine whether finger dexterity impairment can be reduced in chronic stroke when training on a task focused on moving fingers against abnormal synergies without allowing for compensatory maneuvers. Methods. We recruited 18 chronic stroke patients with significant hand motor impairment. First, participants underwent baseline assessments of hand function, impairment, and finger individuation. Then, participants trained for 5 consecutive days, 3 to 4 h/d, on a multifinger piano-chord-like task that cannot be performed by compensatory actions of other body parts (e.g., arm). Participants had to learn to simultaneously coordinate and synchronize multiple fingers to break unwanted flexor synergies. To test generalization, we assessed performance in trained and nontrained chords and clinical measures in both the paretic and the nonparetic hands. To evaluate retention, we repeated the assessments 1 day, 1 week, and 6 months post-training. Results. Our results showed that finger impairment assessed by the individuation task was reduced after training. The reduction of impairment was accompanied by improvements in clinical hand function, including precision pinch. Notably, the effects were maintained for 6 months following training. Conclusion. Our findings provide preliminary evidence that chronic stroke patient can reduce hand impairment when training against abnormal flexor synergies, a change that was associated with meaningful clinical benefits.


Asunto(s)
Mano/fisiopatología , Accidente Cerebrovascular Isquémico/rehabilitación , Aprendizaje/fisiología , Destreza Motora/fisiología , Paresia/rehabilitación , Rehabilitación de Accidente Cerebrovascular , Anciano , Enfermedad Crónica , Estudios de Cohortes , Femenino , Dedos/fisiopatología , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/fisiopatología , Masculino , Persona de Mediana Edad , Evaluación de Procesos y Resultados en Atención de Salud , Paresia/etiología , Paresia/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos
18.
Sports (Basel) ; 8(4)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272591

RESUMEN

The main aim of the study was to evaluate how the brain of a Paralympic athlete with severe disability due to cerebral palsy has reorganized after continuous training geared to enhance performance. Both corticospinal excitability of upper-limb muscles and electromyographic activity during swimming were investigated for a Paralympic gold medalist in swimming competitions. Transcranial magnetic stimulation (TMS) to the affected and intact hand motor cortical area revealed that the affected side finger muscle cortical representation area shifted towards the temporal side, and cortico-spinal excitability of the target muscle was prominently facilitated, i.e., the maximum motor evoked potential in the affected side, 6.11 ± 0.19 mV was greater than that in the intact side, 4.52 ± 0.39 mV (mean ± standard error). Electromyographic activities during swimming demonstrated well-coordinated patterns as compared with rather spastic activities observed in the affected side during walking on land. These results suggest that the ability of the brain to reorganize through intensive training in Paralympic athletes can teach interesting lessons to the field neurorehabilitation.

19.
Brain Res ; 1722: 146365, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400310

RESUMEN

In this study, we demonstrate the involvement of left frontoparietal cortices in neural processes for task-switching between skilled movements. Functional magnetic resonance imaging was conducted while thirty-two right-handed healthy participants performed two sequential finger-movement tasks with their left hands. One group (n = 16) trained these tasks through random-practice (tasks were either switched or repeated trial by trial) on one day and blocked-practice (successive intensive practice of each task) on the next day, while the remaining participants practiced in the reverse order. On the first day, performance of both tasks improved in all participants, suggesting that the two skilful tasks can be learned in both practice schedules. However, during the random-practice, the performance in the switched trials initially deteriorated and gradually approached to that in the repeated trials as the practice proceeded. The left (mainly inferior) frontoparietal cortices showed greater preparatory activity for the switched trials compared with the repeated trials in a left-hemispheric dominant manner, and the left intraparietal activity decreased as the performance of the switched trials improved. The results indicate that neural processes for task-switching are associated with the greater preparatory activity in the left inferior frontoparietal cortices, and the efficient switching may proceed concomitantly with the left intraparietal activity reduction.


Asunto(s)
Lóbulo Frontal/fisiología , Actividad Motora , Destreza Motora , Lóbulo Parietal/fisiología , Adulto , Mapeo Encefálico , Femenino , Dedos , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
20.
J Neurophysiol ; 122(2): 797-808, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31242063

RESUMEN

Motor exploration, a trial-and-error process in search for better motor outcomes, is known to serve a critical role in motor learning. This is particularly relevant during reinforcement learning, where actions leading to a successful outcome are reinforced while unsuccessful actions are avoided. Although early on motor exploration is beneficial to finding the correct solution, maintaining high levels of exploration later in the learning process might be deleterious. Whether and how the level of exploration changes over the course of reinforcement learning, however, remains poorly understood. Here we evaluated temporal changes in motor exploration while healthy participants learned a reinforcement-based motor task. We defined exploration as the magnitude of trial-to-trial change in movements as a function of whether the preceding trial resulted in success or failure. Participants were required to find the optimal finger-pointing direction using binary feedback of success or failure. We found that the magnitude of exploration gradually increased over time when participants were learning the task. Conversely, exploration remained low in participants who were unable to correctly adjust their pointing direction. Interestingly, exploration remained elevated when participants underwent a second training session, which was associated with faster relearning. These results indicate that the motor system may flexibly upregulate the extent of exploration during reinforcement learning as if acquiring a specific strategy to facilitate subsequent learning. Also, our findings showed that exploration affects reinforcement learning and vice versa, indicating an interactive relationship between them. Reinforcement-based tasks could be used as primers to increase exploratory behavior leading to more efficient subsequent learning.NEW & NOTEWORTHY Motor exploration, the ability to search for the correct actions, is critical to learning motor skills. Despite this, whether and how the level of exploration changes over the course of training remains poorly understood. We showed that exploration increased and remained high throughout training of a reinforcement-based motor task. Interestingly, elevated exploration persisted and facilitated subsequent learning. These results suggest that the motor system upregulates exploration as if learning a strategy to facilitate subsequent learning.


Asunto(s)
Conducta Exploratoria/fisiología , Metacognición/fisiología , Actividad Motora/fisiología , Práctica Psicológica , Desempeño Psicomotor/fisiología , Refuerzo en Psicología , Adulto , Retroalimentación Psicológica/fisiología , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...